skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Winter, Walter"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We discuss the possible association of an astrophysical neutrino (IC220405B) with the recently reported, extremely energetic tidal disruption event (TDE) candidate AT2021lwx (ZTF20abrbeie, aka “Scary Barbie”) at redshiftz= 0.995. Although the TDE is about 2.°6 off the direction of the reconstructed neutrino event (outside the 90% confidence level localization region), the TDE candidate shares some important characteristics with so-far-reported neutrino–TDE associations: a strong infrared dust echo, high bolometric luminosity, a neutrino time delay with respect to the peak mass accretion rate of the order of a hundred days, and a high observed X-ray luminosity. We interpret this new association using an isotropic emission model, where neutrinos are produced by the collision of accelerated protons with infrared photons. After accounting for the high redshift of AT2021lwx (by interpreting the data in the supermassive black hole (SMBH) frame), we find that the expected neutrino fluences and neutrino time delays are qualitatively comparable to the other TDEs. Since data are only available up to 300 days postpeak in the SMBH frame, significant uncertainties exist in the dust echo interpretation, and therefore in the predicted number of neutrinos detected, N ν 3.0 × 10 3 0.012 . We recommend further follow-up of this object for an extended period and suggest refining the reconstruction of the neutrino arrival direction in this particular case. 
    more » « less
  2. Abstract Three Tidal Disruption Event candidates (AT2019dsg, AT2019fdr, and AT2019aalc) have been associated with high-energy astrophysical neutrinos in multimessenger follow-ups. In all cases, the neutrino observation occurred ( 100 ) days after the maximum of the optical-ultraviolet (OUV) luminosity. We discuss unified fully time-dependent interpretations of the neutrino signals where the neutrino delays are not a statistical effect, but rather the consequence of a physical scale of the post-disruption system. Noting that X-ray flares and infrared (IR) dust echoes have been observed in all cases, we consider three models in which quasi-isotropic neutrino emission is due to the interactions of accelerated protons of moderate, medium, and ultra-high energies with X-rays, OUV, and IR photons, respectively. We find that the neutrino time delays can be well described in the X-ray model assuming magnetic confinement of protons in a calorimetric approach if the unobscured X-ray luminosity is roughly constant over time, and in the IR model, where the delay is directly correlated with the time evolution of the echo luminosity (for which a model is developed here). The OUV model exhibits the highest neutrino production efficiency. In all three models, the highest neutrino fluence is predicted for AT2019aalc, due to its high estimated supermassive black hole mass and low redshift. All models result in diffuse neutrino fluxes that are consistent with observations. 
    more » « less